metal-organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

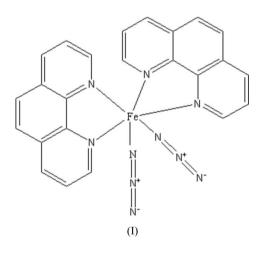
Zhi-Xin Miao,^a Min Shao,^b Hong-Jiang Liu^a and Ming-Xing Li^a*

^aDepartment of Chemistry, College of Science, Shanghai University, Shanghai 200444, People's Republic of China, and ^bInstrumental Analysis and Research Center, Shanghai University, Shanghai 200444, People's Republic of China

Correspondence e-mail: mx_li@mail.shu.edu.cn

Key indicators

Single-crystal X-ray study T = 273 K Mean σ (C–C) = 0.005 Å R factor = 0.042 wR factor = 0.127 Data-to-parameter ratio = 12.2


For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Diazidobis(1,10-phenanthroline)iron(II)

The solution reaction of Fe^{II} with 1,10-phenanthroline and NaN₃ affords the title complex, $[Fe(N_3)_2(C_{12}H_8N_2)_2]$. In this complex, the central atom adopts a six-coordinate octahedral geometry, with monodentate azide ligands occupying the *cis* sites and two phenanthroline ligands occupying the other four sites, forming a *cis* isomer.

Comment

1,10-Phenanthroline complexes have been studied extensively with respect to geometrical isomerism. Most of them are *trans* isomers (Sun *et al.*, 2006; Phuengphai *et al.*, 2006). Azide compounds have been known for a long time and are still an area of great interest for several important reasons. One of them is their various coordination modes (Ribas *et al.*, 1999; Nayak *et al.*, 2005). The azide anion can act as a monodentate ligand, as well as a bridging ligand, adopting end-on and endto-end modes, generating complexes with structures ranging from mononuclear to three-dimensional (Monfort *et al.*, 2001; Wang *et al.*, 2004; Pan *et al.*, 1999). We report here a new *cis*coordinated compound, [Fe(N₃)₂(phen)₂], (I).

As shown in Fig. 1, the Fe^{II} atom is coordinated by six N atoms, of which four are from phen ligands and the other two are from *cis*-azide groups. The two phen planes are nearly perpendicular to one another, with a dihedral angle of 79.8° . The azide anion acts as a monodentate ligand (Kim *et al.*, 2002; Chun *et al.*, 2000). The packing of complex (I) is shown in Fig. 2.

Experimental

© 2006 International Union of Crystallography All rights reserved

Complex (I) was synthesized in a solution reaction. NaN_3 (0.2 mmol) dissolved in 2 ml water was added to 5 ml aqueous solution of

Received 21 July 2006 Accepted 30 July 2006 $FeSO_4$ ·7H₂O (0.1 mmol) with stirring. An ethanol solution (5 ml) of phen (0.2 mmol) was then added to the solution and the mixture was stirred for 4 h. The mixture was filtered and the resulting clear solution was allowed to stand at room temperature to evaporate slowly. After one week, single crystals of (I) suitable for X-ray diffraction were obtained.

V = 1092.56 (4) Å³

 $D_x = 1.521 \text{ Mg m}^{-3}$

 $0.30 \times 0.20 \times 0.20 \mbox{ mm}$

12819 measured reflections

3845 independent reflections

3348 reflections with $I > 2\sigma(I)$

Mo $K\alpha$ radiation

 $\mu = 0.73 \text{ mm}^{-1}$

T = 273 (2) K

Block, red

 $R_{\rm int} = 0.026$

 $\theta_{\rm max} = 25.0^{\circ}$

Z = 2

Crystal data

 $\begin{array}{l} [\mathrm{Fe}(\mathrm{N}_3)_2(\mathrm{C}_{12}\mathrm{H_8N_2})_2] \\ M_r = 500.32 \\ \mathrm{Triclinic}, \ P\overline{1} \\ a = 8.1824 \ (2) \ \ \mathrm{\AA} \\ b = 11.1341 \ (2) \ \ \mathrm{\AA} \\ c = 12.6788 \ (2) \ \ \mathrm{\AA} \\ \alpha = 83.344 \ (1)^\circ \\ \beta = 81.844 \ (1)^\circ \\ \gamma = 73.451 \ (1)^\circ \end{array}$

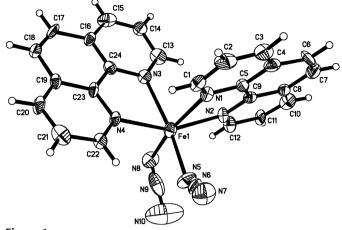
Data collection

Bruker SMART CCD area-detector diffractometer ω scans Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996) $T_{min} = 0.811, T_{max} = 0.868$

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_0^2) + (0.0699P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.042$	+ 0.6391P]
$wR(F^2) = 0.128$	where $P = (F_0^2 + 2F_c^2)/3$
S = 1.09	$(\Delta/\sigma)_{\rm max} = 0.001$
3845 reflections	$\Delta \rho_{\rm max} = 0.44 \ {\rm e} \ {\rm \AA}^{-3}$
316 parameters	$\Delta \rho_{\rm min} = -0.36 \ {\rm e} \ {\rm \AA}^{-3}$
H-atom parameters constrained	

Table 1


Selected geometric parameters (Å, °).

Fe1-N5	2.160 (3)	Fe1-N1	2.321 (2)
Fe1-N8	2.195 (3)	N5-N6	1.160 (4)
Fe1-N2	2.257 (2)	N6-N7	1.147 (4)
Fe1-N4	2.272 (2)	N8-N9	1.034 (4)
Fe1-N3	2.316 (2)	N9-N10	1.214 (6)
N5-Fe1-N8	95.38 (12)	N5-Fe1-N1	86.26 (10)
N5-Fe1-N2	101.59 (11)	N8-Fe1-N1	166.15 (9)
N8-Fe1-N2	93.88 (10)	N2-Fe1-N1	72.34 (8)
N5-Fe1-N4	94.66 (10)	N4-Fe1-N1	91.35 (8)
N8-Fe1-N4	102.20 (9)	N3-Fe1-N1	90.05 (8)
N2-Fe1-N4	155.95 (9)	N6-N5-Fe1	131.8 (2)
N5-Fe1-N3	166.42 (10)	N7-N6-N5	178.2 (3)
N8-Fe1-N3	91.33 (10)	N9-N8-Fe1	126.0 (3)
N4-Fe1-N3	72.34 (8)	N8-N9-N10	176.5 (5)

All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C-H = 0.93 Å and $U_{iso}(H) = 1.2U_{eq}(C)$.

Data collection: *APEX2* (Bruker, 2000); cell refinement: *SAINT* (Bruker, 2000); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL* (Sheldrick, 2000); software used to prepare material for publication: *SHELXTL*.

The project was supported by the Development Foundation of Shanghai Municipal Education Commission, China.

Figure 1

The molecular structure of (I), with displacement ellipsoids drawn at the 30% probability level. H atoms are shown as small spheres of arbitrary radii.

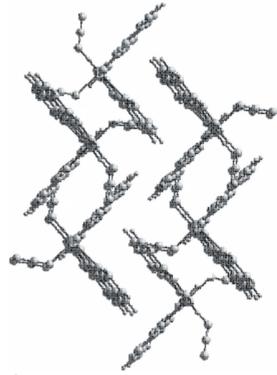


Figure 2 A packing diagram of complex (I).

References

- Bruker (2000). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Chun, H. & Bernal, I. (2000). Acta Cryst. C56, 1326-1329.
- Kim, B. J., Lee, Y. M., Kim, E. H., Kangb, S. K. & Choia, S. N. (2002). Acta Cryst. C58, m361–m362.
- Monfort, M., Resino, I., Fallah, M. S. E., Ribas, J., Solans, X., Bardia, M. F. & Evans, H. S. (2001). *Chem. Eur. J.* 7, 280–287.
- Nayak, M., Kundu, P., Drew, M. G. B. & Mohanta, S. (2005). Struct. Chem. 16, 629–633.
- Pan, L., Zheng, N. W., Wu, Y. G. & Huang, X. Y. (1999). J. Coord. Chem. 47, 551–557.
- Phuengphai, P., Youngme, S., Pakawatchai, C., van Albada, G. A., Quesada, M. & Reedijk, J. (2006). *Inorg. Chem. Comm.* 9, 147–151.

- Ribas, J., Escuer, A., Monfort, M., Vicente, R., Cortes, R., Lezama, L. & Rojo, T. (1999). *Coord. Chem. Rev.* **193–195**, 1027–1068.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (1997). *SHELXS*97 and *SHELXL*97. University of Göttingen, Germany.
- Sheldrick, G. M. (2000). SHELXTL. Version 6.1. Bruker AXS Inc., Madison, Wisconsin, USA.
- Sun, C. Y. & Jin, L. P. (2006). Polyhedron, 25, 1327–1332.
- Wang, S. B., Yang, G. M., Liao, D. Z. & Li, L. C. (2004). Inorg. Chem. 43, 852– 854.